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1. Introduction
During the April 2022 SIEVE Principal Investigator’s Meeting, the Wizkit team outlined a plan for a
high level IR (IR2 or Translation-IR) with semantics defined by a translation to a lower level flat
circuit IR (IR0 or Circuit-IR). This design addresses a key challenge facing the program: the conflict
between our mandate to come up with a common IR and our tendency to tightly integrate each ZK
backend with a specifically tailored IR. Further complicating this issue is the wide variety in design
choices and capabilities of each backend-specific IR. The SIEVE program has seen everything from
C++ libraries through R1CS as viable backend-specific IRs. With this in mind, Wizkit’s IR proposal
begins with TA1 teams producing statements in the Translation-IR, and TA2s taking one of the
following approaches to prove the statement.

1. Interpret the Translation-IR statement, and emit a directive to a lower-level IR at each
expression. This is the approach taken in specifying the Translation-IR, using the Circuit-IR as a
target. We expect that an R1CS translation would also be easy to implement, as would be small
deviations to the Circuit-IR.

2. Perform a syntax to syntax translation from the Translation-IR to a similarly capable, but
backend-specific IR.

3. Interpret the Translation-IR statement, and directly evaluate each expression in ZK, rather than
emitting a lower-level IR.

4. A hybrid approach utilizing two or more of the previous approaches.

This overview will start by outlining some common elements of both IRs. Then it will describe the
canonical forms for the Circuit-IR and the Translation-IR. Finally, it will outline scenarios where
deviations from the canonical forms are permitted or encouraged.

1.1. Multi Field Circuits
To most practitioners of ZK, a single prime field is chosen at the beginning of a proof and used
throughout. However, for some applications it is desirable to use multiple primes for different
elements within a single larger proof. For example a large and expensive prime may be needed to
verify public-key signatures, while a medium sized prime is necessary for large scale business logic.

To accommodate these applications, the IR must allow for multiple fields within a single relation.
To TA1 the field must describe the type of a wire, while to TA2 these wires actually belong to
multiple independent proofs. An analogy to the real world might be a circuit card with transistor
logic on one side and high voltage on the other.

Occasionally information from one field will be required in another. The IR models this using a
conversion gate with inputs in one field and outputs in another. To continue the analogy, a relay
would allow information to flow from transistor logic into high voltage, or in reverse, an analog-
digital converter. In ZK, methodologies must be developed and used to show equivalence of inputs
and outputs across independent proofs or even across different proof systems.
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1.2. Feature Categorization Framework
To aide in designing the IR, the following decision framework is used to categorize features as
belonging to the IR’s core functionality or to a library or a plugin. IR features can be categorized in
two aspects. First, a feature may be self-contained, or it may have idiosyncrasies which cause it to
interact poorly with other features (for lack of a better term, we’ll call these "control features"). For
example, ring-based ZK would be simple to isolate into its own wiring space and to share @add and
@mul gate syntax with field-based ZK. By contrast, IR1 introduced a syntax for private condition
switch statements which necessitated changes to the semantics of @short_witness stream
consumption — since the active branch was chosen after all branches were executed, the stream
was rewound before executing each case. Second, a feature may be necessary to enable a class of
computation or optimization. For example, a dot product can be simulated using combinations of
@mul and @add. However, conversion gates are necessary to enable comparison of values in different
fields, and this functionality cannot be simulated with combinations of simple gates.

Requirements of the Circuit-IR

The Circuit-IR’s purpose is to serve as the translation target for the Translation-IR. As such, it must
first be capable of representing any circuit which is desirable to emit from the Translation-IR.
Secondly, it should be simple and easy for any backend to parse it and prove whether or not the
relation is valid. Lastly, it should be flexible enough that self-contained features may be optimized
with plugins. What the Circuit-IR likely will not be is succinct or compact; rather, circuits are
expected to be enormous. Further, it is expectable that although any backend can handle the
Circuit-IR, specific samples of the Circuit-IR are likely to be tailored for a particular backend
through the use of preferred primes and plugins.

Requirements of the Translation-IR

The Translation-IR will make up for the Circuit-IR’s deficiencies with increased complexity. As a
program, control features will act in harmony to both shrink relation sizes and increase flexibility.
With increased flexibility, interoperability will be restored for specific samples of the Translation-
IR. For example, primes might be left unspecified in the Circuit-IR, or even substituted during
compilation. With increased semantic information — a type system and control flow — the
Translation-IR will also enable greater opportunities for optimization. What the Translation-IR will
not enable is private condition control flow.

2. Motivating Examples
Before outlining the specifics of the IR, we have a few examples which we think help illustrate the
motivation and design decisions which went into this proposal.

The examples shown in this section predate the existence of any execution environment and are as of yet untested.

2.1. Matrix Multiplier
The matrix multiplier demonstrates a size- and field-agnostic functionality, vectorized computation,
and function composition. Evaluating the Translation-IR occurs in essentially two phases; a public
translation phase evaluates publicly known variables and expressions, and emits private
expressions as directives in a circuit. Public variables such as field F and size s are known during
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the public phase and may be used to define the type of variables emitted to the output circuit.
Variables with wire in their type only have values during the circuit phase, so operations on these
variables use gates such as @mul which are emitted to the output.

First up, the vector_mul function performs a pairwise multiplication across two private vectors. The
type wire F[s] denotes a vector of s many wires using the field F. In the body, a for loop traverses
across the input and output vectors, and the @mul gate emits a directive on each iteration of the loop.

@function vector_mul(@out: wire F[s] os, @in: field F, size s, wire F[s] ls, wire F[s]
rs)
  o in os <- for i (l in ls, r in rs)
    o <- @mul(l, r);
  end
@end

The vector_sum function will add all the elements of an input list to create a single output wire. This
loop adds each value in a list to a temporary variable. Because the @add actually emits a directive, a
new wire is created on each iteration of the loop and discarded in the next. This example also
introduces some array indexing: first to take the 0th element, and then to take a subset of the array
starting at item 1 through the end of the list (s - 1).

@function vector_sum(@out: wire F o, @in: field F, size s, wire F[s] ls)
  tmp <- ls[0];
  for i (l in ls[1 ... (s - 1)]) modifies tmp
    tmp <- @add(tmp, l);
  end
  o <- tmp;
@end

The vector_dotprod function simply combines the prior two functions, first multiplying out a new
vector and then summing its elements.

@function vector_dotprod(@out: wire F o, @in: field F, size s, wire F[s] ls, wire F[s]
rs)
  tmp <- @call(vector_mul, F, s, ls, rs);
  o <- @call(sum, tmp);
@end

Lastly, the matrix_mul function accepts three size parameters to define two matrices sized such that
they may be multiplied together. It uses a pair of for loops to repeatedly invoke the dot product on a
row of the L matrix and a column of the R matrix. It uses an index expression to select a row and a
special "dimension reordering" index expression to take a column of the matrix.

In the column expression, dimension reordering would ordinarily produce a vector in the output
with gaps between the elements. This can cause problems in the Circuit-IR where contiguity
requirements may forbid gaps between elements in a list of wires. However, the @wire expression
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(among other things) will, when necessary, emit copy directives to the output creating a contiguous
range of wires.

@function matrix_mul(@out: wire F[a, c] O, @in: field F, size a, size b, size c, wire
F[a, b] L, wire F[b, c] R)
  row in O <- for i (l in L)
    o in row <- for j (r in R[^1, ^0])
      o <- @call(vector_dotprod, l, @wire(r))
    end
  end
@end

When translating these functions to a circuit, there are a few potential approaches to the
translation. Even with strict adherence to this proposal’s defined semantics, function inlining could
emit either a massive matrix_mul function body with repeated sequences of @mul and @add or a more
compact body with just repeated calls to vector_dotprod. If plugins are enabled, the body of any or
all of these functions may be replaced with a single plugin directive indicating that the backend
must recognize the functionality by a predefined name. Alternate translation approaches — such as
translation to a C library -- might emit a preexisting function call in place of a plugin or simply emit
C code for this same code flow.

2.2. Arithmetic Multiplexer Function
The arithmetic multiplexer demonstrates control flow using publicly known integers. It is also the
basis for simulating private control flow in ZK, where all branches must be evaluated before
selecting results from the "correct" branch. This example uses Fermat’s Little Theorem to create a
select bit for every index in an array. Every bit should have the value 0 except for the active branch
which has 1. Then the input array and the select bit array may be used in a dot product to produce
the single output value.

Fermat’s Little Theorem allows us to raise a number to the power of prime-1 and we get either 0 if
the number was 0 or 1 if it were non-zero (modulo prime). This means we need the recursive fast-
power algorithm. Since prime-1 is known ahead of time, we can use public arithmetic to condition
our recursion. Thus, our exponent function has a publicly known field (prime), a publicly known
exponent, and a private base.

@function exponent(@out: wire F result, @in: field F, integer exp, wire F base)
  result <- if (exp == 1)
    result <- base;
  elif ((exp % 2) == 0)
    tmp <- @call(exponent, F, (exp / 2), base);
    result <- @mul(tmp, tmp);
  else
    tmp <- @call(exponent, F, exp - 1, base);
    result <- @mul(tmp, base);
  end
@end
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When translating the exponent function, the translator should probably inline recursive calls. In
the field GF(7), the exponent would start as 6 and produce the following Circuit-IR function. Notice
that in the Circuit-IR variables are numbered within each field’s numbering space. So in this
example 0 refers to the numbering space for the field GF(7) and $n refers to a numbered wire
within that space.

Circuit IR

@function(exponent_7_6, @out: 0:1, @in: 0:1)
  // $0 output wire
  // $1 input wire
  $2 <- @mul(0, $1, $1) // stack level 3, exp is 2
  $3 <- @mul(0, $2, $1) // stack level 2, exp is 3
  $0 <- @mul(0, $3, $3) // stack level 1, exp is 6
@end

The multiplex function is then simple to write. First a loop generates a selects vector with length s,
then a call to vector_dotprod calculates the selected output.

@function arithmetic_multiplex(@out: wire F o, @in: field F, size s, wire F branch,
wire F[s] candidates)
  F_minus_1 <- (@integer(F) - 1);
  select in wire F[s] selects <- for i
    tmp <- @addc(branch, (F_minus_1 - @integer(i)));
    exp <- @call(exponent, F, F_minus_1, tmp);
    select <- @addc(@mulc(exp, F_minus_1), 1);
  end

  o <- @call(vector_dot, F, s, candidates, selects);
@end

2.3. Private Index Arrays or Random Access Memory
(RAM)
While the IR cannot directly support RAM, it can simulate some of its behavior using circuits.
Although this won’t enable the performance and scalability of true RAM, it does allow for the IR to
provide an interface for RAM. Backends with support for RAM may use the IR’s interface to
interoperate their RAM with a variety of frontends. Backends lacking support for RAM are still
enabled to perform proofs at small scales until the naive RAM simulation’s poor scalability becomes
prohibitive. This is not unlike the prior matrix multiplication example where schoolbook
multiplication is used, even though certain backends may scale bigger and faster using bespoke
algorithms for ZK.

Using Translation-IR structs, an interface and a naive implementation for RAM can be developed.

struct RAM
  field F;
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  size s;
  wire F[s] buffer;

  // Create a RAM with all elements assigned 0
  @function RAM_create(@out: struct RAM r, @in: field G, size t)
    b in wire G[t] buf <- for i
      b <- @wire(F: 0);
    end

    // The special create directive will instantiate a struct
    r <- create(F: G, s: t, buffer: buf);
  @end

  // Read one element from the RAM
  @function RAM_read(@out: wire G o, @in: field G, struct RAM r, wire G idx)
    // The special access directive allows element access to a struct
    f, s, buf <- access(r: F, s, buffer);

    // Call out to an arithmetic multiplexer here to behave like RAM.
    // This statement also indirectly checks that f and G are the same field
    // because it requires o and idx to have both field f and G
    o <- @call(arithmetic_multiplex, f, s, idx, buf);
  @end

  // Write one element to the RAM
  @function RAM_write(@in: field G, modify struct RAM r, wire G idx, wire G val)
    f, s, buf <- access(r: F, s, buffer);

    f_minus_1 <- (@integer(f) - 1);

    n in nbuf <- for i (b in buf)
      // create a selector bit and an opposite selector bit
      tmp <- @addc(idx, (f_minus_1 - @integer(i)));
      o_sel <- @call(exponent, f, f_minus_1, tmp);
      n_sel <- @addc(@mulc(o_sel, F_minus_1, 1), 1);

      // select either the new value or the old value
      n <- @add(@mul(val, n_sel), @mul(b, o_sel));
    end

    // modify an annotated input struct
    r <- @modify(buffer : nbuf);
  @end
end

The ability to use a RAM-like interface enables the IR to encode algorithms such as merge sort
which require only RAM and public control flow. Merge sort can be implemented using just RAM
and comparisons.

// o is 1 if l < r, and 0 otherwise
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@function less_than(@out: wire F o, @in: field F, wire F l, wire F r)
  /* Omitted */
@end

@function merge_sort(@in: field F, struct RAM ram, size data_start, size
scratch_start, size length)
  for i repeat length
    tmp <- @call(RAM_read, F, ram, @wire(F: (i + data_start)));
    @call(RAM_write, F, ram, @wire(F: (i + scratch_start)), tmp);
  end

  @call(merge_sort_helper, F, ram, data_start, scratch_start, length);
end

@function merge_sort_helper(@in: field F, struct RAM ram, size data_start, size
scratch_start, size length)
  if (length > 1)
    // recurse over left and right half
    mid = (length / 2);
    @call(merge_sort, F, ram, scratch_start, data_start, mid);
    @call(merge_sort, F, ram (scratch_start + mid), (data_start + mid), mid);

    // then merge
    a <- @wire(F: scratch_start);
    b <- @wire(F: scratch_start + length);
    c <- @wire(F: data_start);
    for i repeat length modifies a, b, c
      // Read from RAM and then compare
      a_val <- @call(RAM_read, F, ram, a);
      b_val <- @call(RAM_read, F, ram, b);
      cond <- @call(less_than, F, a_val, b_val);
      anticond <- @addc(@mulc(cond, (integer(F) - 1)), 1);

      // Select a value to write to RAM
      c_val <- @add(@mul(a_val, cond), @mul(b_val, anticond));
      @call(RAM_write, F, ram, c, c_val);

      // update the indexes
      a <- @add(@mul(@addc(a, 1), cond), @mul(a, anticond));
      b <- @add(@mul(@addc(b, 1), anticond), @mul(b, cond));
      c <- @addc(c, 1);
    end
  end
@end

RAM also opens up the possibility of encoding a CPU in the IR, although this is not shown.
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3. Common Elements

3.1. IR Header
The IR header starts with a version number and a resource type indicator. The current version
number is 2.0.0-wtk-candidate. The type tells how to parse and use the remainder of the IR
resource. Here is an example header with the circuit type.

version 2.0.0-wtk-candidate;
circuit;

These are the available resource type indicators.

circuit

a relation in the Circuit-IR.

translation

a relation in the Translation-IR.

library

a library which may be included by a Translation-IR relation.

instance

a stream of publicly known variables.

short_witness

a stream of prover-only variables.

3.2. Field and Wire Types
Wires are the variables of the Circuit-IR, and fields are their type. Each wire carries an element in
some field from the output of one gate to the inputs of one or more later gates.

In the Translation-IR, both fields and wires are variables. Fields are special, because they’re both
variables and types. Translation-IR wires differ from those of the Circuit-IR, because they don’t
carry field elements. Instead, they carry identifiers for wires generated in the output Circuit-IR
relation.

In the Translation-IR, fields are variables because they must be function parameters in the standard
library. It wouldn’t be a standard library if it were specific to a field. However, this requirement
collides with the Circuit-IR’s requirement that fields be declared as front matter to the relation to
allow TA2 to prepare for each field. To resolve this issue, we add a constraint to the Translation-IR:
fields may be declared only in the global scope (easy to scan), but can be passed as constant
parameters to function calls.
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3.3. Arithmetic and Boolean Gates
In the IR 1.0 revision, a gate set was specified to choose between arithmetic gates (@add, @mul, etc.)
and Boolean gates (@xor, @and, etc.). This revision does away with the Boolean gates and uses
equivalent functionality in GF(2).

Boolean Gate (old) Arithmetic Replacement (new)

@xor @add

@and @mul

@not @addc(x, <1>)

3.4. Field Conversions
A key goal for Phase II’s IR is that multiple fields be allowed in the same relation, and that TA2 be
able to perform conversions from one field to another ("Field Switching"). In field switching we
consider each wire to be a digit in the base of its prime. When converting from a large field to a
small field a single digit must be decomposed into multiple digits of a smaller base, or vice-versa.

The Circuit-IR requires that a specification for conversions be given in the front matter to allow TA2
to prepare for necessary conversions. The conversion specification declares the input and output
fields and wire counts. Similarly to field specifications, there is the possibility that the standard
library uses conversions that differ by function invocation. To square the standard library with the
Circuit-IR’s front matter, the Translation-IR is again constrained with the requirement that
allowable conversions are specified in the global scope.

Another intricacy of field switching is the particular algorithm for converting numeric values from
one field to another. Pseudo-code for a canonical conversion is taken from Wizkit’s field-switching
collab with PROVENANCE last year. Deviations from this conversion algorithm may be
implemented in the Translation-IR as a function wrapping the canonical conversion but may be
overridden by backends supporting the deviation naturally.

3.5. Instance and Witness Streams
Each field in a relation will require an instance and witness stream. Each stream is specific to a
single field, because we expect that certain extensions and transformations will modify or add to
the stream. It should be easier to track one stream per field during translation than to possibly
back-fill empty spaces in a stream.

NOTE
this proposal currently requires additional thought and clarity on how multiple
input streams will be tracked from TA1 through translation and into TA2.

The field starts with single field declaration; then each line has a stream value of the form < value
>;.
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4. The Circuit-IR
The Circuit-IR, in general, is a flat list of gates. It does allow function gates to wrap a sub-list of gates
for reuse. Due to the large expected size of relations, and for ease of referencing from the
Translation-IR, a wire-numbering scheme is used for the Circuit-IR.

4.1. Field and Conversion Specifications
The Circuit-IR requires that fields and conversions be specified in front matter, between the IR
header and the @begin keyword.

A field specification indicates the field’s characteristic (prime). It also implicitly specifies a field-
index, assigned incrementally as each field is specified.

// index 0: Boolean
@field 2;
// index 1: 2^61 - 1
@field 2305843009213693951;
// index 2: 2^255 - 19
@field 57896044618658097711785492504343953926634992332820282019728792003956564819949;

The conversion specifications may be interleaved with the field specifications. Each conversion
specification has the form @convert(@out: out_field_idx: out_length, @in: in_field_idx:
in_length); Here are a few examples.

// Convert Booleans to Mersenne61 and back
@convert(@out: 1:1, @in: 0:61);
@convert(@out: 0:61, @in: 1:1);
// Convert Mersenne61 to 25519 and back
@convert(@out: 2:1, @in: 1:5);
@convert(@out: 1:5, @in: 2:1);

4.2. Memory Management
Unlike prior iterations of the Circuit-IR, this revision places strict restrictions on memory
management, specifically when consecutive wires may be considered to be stored in contiguous
space. Two wires may have consecutive wire-numbers, but live in non-contiguous space.

Each field is given its own numbering space, with wire numbers in the range of 0 ... 264-1. Most
directives will use a field-index parameter to select in which field, and in which numbering space,
they will act. For example, 0: $123 and 1: $123 may both be defined, with each wire residing in a
different numbering space due to their different fields.

To create wires in contiguous space, the @new(field_idx: $first ... $last); directive may be used.
It creates space for wires, but does not assign values to them.
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@new(1: $100 ... $200);

The @delete directive remains with the form @delete(field_idx: $first ... $last);. When deleting
contiguous space (allocated with @new), the $first and $last parameters must match the preceding
@new directive; however, non-contiguous wires may also be deleted.

// fail - does not match prior new
@delete(1: $100 ... $110);
// delete the prior new
@delete(1: $100 ... $200);

// assign, but don't @new 1: $53 ... $68

// okay - these wires are not contiguous and may be deleted in any order
@delete(1: $53 ... $60);
@delete(1: $62 ... $68);
@delete(1: $61 ... $61);

As with prior IR revisions, each wire in a @delete range must be assigned, but not previously
deleted. Also, once deleted, a wire may not be reused.

IMPORTANT

Notice that the form of nearly all ranges in the IR is first … last rather than first … length.
Ranges are inclusive on both ends.

4.3. Standard Gates
The form of most standard gates is $out <- gate_name(field_idx: $left_in, $right_in);. Other
gates have variations on this, and are described as necessary.

• @add arithmetic addition

• @mul arithmetic multiplication

• @addc arithmetic addition by a constant

◦ Has the form $out <- @addc(field_idx: $left_in, < right_constant >);

• @mulc arithmetic multiplication by a constant

◦ Has the form $out <- @mulc(field_idx: $left_in, < right_constant >);

• Copy the input wire to the output wire

◦ Has the form $out <- field_idx: $left_in;

• Assign the input constant to the output wire

◦ Has the form $out <- field_idx: < left_constant >;

• @instance and @short_witness assign wires using instance or witness stream inputs.

◦ Have the form $out <- @stream_name(field_idx);
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• @assert_zero

◦ Has the form @assert_zero(field_idx: $wire);

4.4. Conversion Gates
Conversion gates enable conversion of wires from one field to another. Conceptually a list of wires
in field A is converted to a list of wires in field B. Within the circuit, conversion has the form
out_field_idx: $out_first [... $out_last] <- @convert(in_field_idx: $in_first [... $in_last]);.
The conversion's fields and sizes must match a conversion specification from the front matter.

// convert Booleans to a single Mersenne61
1: $0 <- @convert(0: $1 ... $61);
// convert a single 25519 to 5 Mersenne61s
1: $1 ... $5 <- @convert(2: $0);

The input list to the @convert gate must be either a single wire, or it must be contiguous. The output
list may be contiguous, or else the backend should allocate contiguous space for them.

4.5. Function Gates
Function gates define a sub-circuit which may be reused multiple times. The function’s outputs and
inputs are given as ranges mapped sequentially, and by field, into the function’s scopes. In the
function’s signature, each range is defined by a length and a field index. When the function is
invoked, each range is mapped into its scope incrementally from 0.

The remapping process during function invocation is aware of memory contiguity, and should
reject ranges which are discontiguous. It should allow non-assigned output ranges to be allocated
implicitly.

The function declaration and invocation have the following forms

@function(function_name,
    [@out: out_field_idx_0: out_field_count_0 [, out_field_idx_n: out_field_count_n],]
    [@in: in_field_idx_0: in_field_count_0 [, in_field_idx_n: in_field_count_n])`.
  /* gate list */
@end

[out_field_idx_0: $out_first_0 [ ... $out_last_0 ]
  [, out_field_idx_n: $out_first_n [ ... $out_last_n ] ] <- ]
  @call(function_name [, in_field_idx_0: $in_first_0 [ ... $in_last_0 ]
      [, in_field_idx_n: $in_first_n [ ... $in_last_n ] ] ]);

Function Gate Example

@function(dot_prod_10, @out: 1:1; @in: 1:10, 1:10)
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  // omitted
@end

@new($0 ... $9, 1);
@new($10 ... $22, 1);
// assign $0 ... $19

1:$25 <- @call(dot_prod_10, 1: $0 ... $9, 1: $10 ... $19);

Function Declaration Ordering and Recursion

A potential point of contention is the order in which functions must be declared. A natural
restriction on the IR is that a function be declared before its invocation. However, there may be
debate as to how we define "before invocation". This could be done either in lexical order or in
program execution order.

@function(a) /* ... */ @end

@function(b)
  @call(a);
@end

@call(b)

@function(b)
  @call(a);
@end

@function(a) /* ... */ @end

@call(b)

The left example is correct in both lexical order and program execution order. The right is only
correct in program execution order. There may be a push and pull between complexity in the IR2
translator and in TA2 backends. Lexical order might require the IR2 translator to analyze a function
and emit other functions before emitting a size- and field-specific function. However, program
execution order might require a TA2 to delay intermediate compilation of function declarations
until sub-functions are declared.

4.6. Example
Here is the right-triangle example using the Circuit-IR.

Relation

version 2.0.0-wtk;
circuit;
  @field 7 arithmetic;
  @field 127 arithmetic;
  @convert(1:1, 0:1);

@begin
  // mod 7 hypotenuse
  $0 <- @instance(0);
  // mod 7 legs
  $1 <- @short_witness(0);
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  $2 <- @short_witness(0);

  // mod 7 is too small to square them
  1:$0 <- @convert(0:$0);
  1:$1 <- @convert(0:$1);
  1:$2 <- @convert(0:$2);

  // square them
  $3 <- @mul(1: $0, $0);
  $4 <- @mul(1: $1, $1);
  $5 <- @mul(1: $2, $2);
  $6 <- @add(1: $4, $5);

  // negate the hypotenuse
  $7 <- @mulc(1: $3, <126>);

  // assert equal
  $8 <- @add(1: $6, $7);
  @assert_zero(1: $8);
@end

Instance

version 2.0.0-wtk;
instance;
  @field 7 arithmetic;
@begin
  < 5 >;
@end

Witness

version 2.0.0-wtk;
short_witness;
  @field 7 arithmetic;
@begin
  < 3 >;
  < 4 >;
@end

5. The Translation-IR
The Translation-IR is a higher-level IR which is evaluated as a program that produces a circuit. At
each (non-public) expression, a gate is emitted in the target — a Circuit-IR relation. Lexical scoping,
an expressive type-system, and public conditioned control flow allow for Translation-IR relations to
be compact, with reusable elements. A key requirement in making the IR flexible and reusable is
the standard library, which specifies common functionality and enables each backend to provide
alternative implementations. While the specification calls for the Translation-IR to produce a
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relation in the Circuit-IR, it should be possible to perform a syntax-to-syntax translation to similarly
capable backend-specific IRs, or interpret the Translation-IR directly in ZK.

NOTE

While the Circuit-IR uses the @ prefix on all keywords, the Translation IR does not. In general,
keywords which will emit to the output circuit will be prefixed with @ (e.g., @mul, @assert_zero),
while keywords with meaning only in the Translation-IR do not have the prefix (e.g., size, for).

5.1. Libraries and Includes
The Translation-IR should allow for libraries to be included into a relation (or as a sub-component
of another library). The included libraries must be listed by their include path, and an identifier is
required for moduling members of the library. The syntax for including a library is include "path"
as identifier;.

include "std/vectors.sieve" as vec;

When using elements from the library it must be prefixed by the library’s identifier. For example,
to use a dot product from the vectors library, vec::dot_prod rather than just dot_prod.

NOTE
There are reasons for and against library prefixes, namely avoidance of global
namespace pollution versus a small amount of added complexity.

5.2. Type System
The following types are allowed in IR2. In general, values of each type become immutable once they
are assigned, upholding the Static Single Assignment principle. The modifies keyword may, in some
situations, allow values to be replaced.

Type Description Specification

integer This holds public intermediate calculations to produce
field elements and field attributes.

unbounded, unsigned
integer

field These define a field and may be used as the type of
wires. Fields must be defined in a global scope and
passed as arguments to functions.

unbounded and unsigned
integer prime, and possibly
additional attributes

size Publicly known sizes and indices of other objects. 64-bit unsigned integer

condition A publicly known Boolean condition, used to select if
branches. The "Boolean" name is disused to
disambiguate public conditions from Boolean circuits.

true or false

Wire These reference wires in the output circuit. a pair of field-index and
wire number.
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Type Description Specification

Tensor Other types may be wrapped by an array, matrix, or
higher-dimensional tensor to aggregate multiple values
of the same type. For tensors of a wire type, the tensor
holds only a range of wires in the output.

The base type, a list of
dimensions, and a range of
wire numbers or a list of
IR2 values.

struct A struct is a compound data type using members with
other types. Its behaviors are defined by member
functions allowing creation, member access, and
mutation.

A list of member variables
followed by a list of
member functions.

5.2.1. The field Type

The reason for holding a distinction between integer and field is that the Circuit-IR requires all
fields to be specified in the front matter. If fully dynamic specification of fields were allowed in the
Translation-IR, then whole program analysis would need to be performed on the relation to
enumerate fields before generating the circuit. Instead, by restricting fields to specification in the
global scope, a quick scan will suffice to enumerate all fields in the Circuit-IR’s front matter.

The following statement creates a field in the Translation-IR. It may only be used at the global scope
of a translation or library resource. The [variable-name] is an identifier and the [characteristic] is
an integer literal to define the field’s prime.

@field [variable-name] <- [characteristic];

NOTE

We use the @field keyword in the understanding that so far the SIEVE Program has
focused on ZK using prime fields. It remains unclear whether or not alternative
field types (or wire types) might be desirable to the program. Both extension fields
and rings are of interest to various performers and may be added to the IR.

Field variables (like most other variables) may not be reassigned; however, (unlike most other
variables) there are no expressions capable of producing new field values. Instead, a field may be
passed as a parameter to a function gate. This way, a relation’s fields may be fixed in the global
scope and passed through invocations to functions which may vary by field. This allows for very
controlled function variations based on fields.

5.2.2. Assignment Status

Due to the used of named return values in functions, variables in the Translation-IR are given an
assignment status: either assigned or non-assigned. Most variables will be assigned immediately. For
example, a value is assigned to a local variable. Functions use named output parameters, which will
not be assigned at their creation, but which must be assigned before the function completes. In this
case, an output parameter knows what type it must accept, but does not carry a value until it is
assigned.

Tensors make for a special case of non-assignment when some elements are assigned and other
elements are non-assigned. When a tensor is in this state, we call it a partially assigned tensor.
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When the last non-assigned element is assigned, the tensor changes from partial assignment to full
assignment.

Finally there is a restriction emplaced on when a non-assigned variable may be assigned. It must be
assigned in the same scope in which it is created. For example, a function output may not be
assigned in a sub-scope of the function; instead, it must be assigned in the function’s outermost
scope. However, it could be assigned as the output of a for loop or if statement, emplacing it into a
sub-scope.

5.2.3. Tensor Indexing Schemes

Wire tensors, in the Translation-IR, are simply an indexing scheme to produce the appearance of
dimensionality over what is actually a flat range. Modifying the indexing scheme to traverse in
alternate directions or to select sub-ranges may be useful or even necessary. For example, a for loop
may want to assign column-wise to a matrix rather than row-wise.

Unfortunately, this brings up the possibility for an inconsistency between IR2’s and IR0’s memory
models. While in IR0 we encounter strict memory contiguity requirements, specifically around
function calls, in IR2 we need alterations to a tensor’s indexing scheme — possibly creating gaps or
jumps in the range. This is resolved with the @wire(tensor) expression which will emit gates to copy
the tensor into a flat range.

NOTE

Originally, we we considered a few options to resolve this issue:

1. Disallow modified indexing schemes

2. Inline function calls where indexing schemes would cause issues

3. Automatically flatten indexing schemes by copying elements before emitting an
IR0 function call

4. Require the frontend to flatten the indexing scheme when necessary

Option 1 was considered undesirable because it lost too much functionality. Option
2 was also considered undesirable because it could have caused blow up in the size
of the output, and, more importantly, when using backend plugins it was likely
unable to solve the problem. Of the remaining options, option 4 was proposed as the
best solution because it gave the frontend better control over potential performance
tradeoffs.

5.3. Expressions
Translation-IR expressions can generally be classified as public expressions and gate expressions.
Public expressions change the public state of the IR2 program. Gate expressions emit gates to the
output circuit and produce references to those gates' outputs in the public state. Naturally, an
identifier is also an expression which produces the value of a variable: either a public value or the
reference to a private value. There are a few classes of expressions.

• Integer expressions manipulate integer and size variables.

• Conditional expressions compare integers and sizes.

18



• Index expressions select items, sub-ranges, or alternate indexing schemes from tensors.

• Gate expressions emit gates to the output circuit.

• Conversion expressions are a special case of gate expressions which allow for converting wires
from one field to another in the output circuit.

• Reserve expressions create non-assigned tensors which may be assigned to later.

5.3.1. Integer Expressions

An integer expression manipulates integer and size variables. The simplest form of this expression
is the numeric literal: 0, 1, 2, etc. Similarly, the identifier of an integer or size variable is also an
integer expression.

More interesting integer expressions have the form (lhs op rhs) where lhs and rhs are sub-
expressions and op is one of the following:

• * multiplication

• / integer division

• % modulo operation or remainder

• + addition

• - subtraction

Finally there are two special expressions for converting public types. The size(sub_expr) expression
will convert an integer or field value to a size mod 264. The integer(sub_expr) expression will
convert a size or a field value to an integer. Notice that field may be converted to size or integer,
but the reverse is not possible, and the arithmetic expressions do not operate over field values.

5.3.2. Conditional Expressions

Conditional expressions are public Booleans and are mainly used for selecting branches of if
statements. There are two forms of conditional expressions, in addition to the literals true and
false.

The comparison form will create the condition after examining two sub-expressions with result
type integer or size. They have the form (lhs op rhs), where op is one of the following.

• == equal

• != not equal

• > greater than

• < less than

• >= greater than or equal

• <= less than or equal

The Boolean form will create the condition after examining two sub-expressions both with result
type condition. They also have the form (lhs op rhs), and the op is one of the following:
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• && Boolean and

• || Boolean or

• (! sub_expr) Boolean not

5.3.3. Index Expressions

Index expressions work with tensors and use the square-brackets notation. The simplest index
expression would select an element from a vector, vec[i]. If instead it indexed a matrix, then it
would select a row, mat[i], producing the result as a vector. To select an element in the matrix use a
multi-index expression, mat[i, j].

The index expression can go further than selecting just rows and elements. Previously mentioned
was altering the index scheme. An obvious alteration would be to select a column. This requires the
dimension reordering operator, ^, which reorders the operand’s dimension indicated by position
onto a produced tensor’s dimension indicated by a numeric constant. For example, mat[^0, i] takes
the operand’s rows at a fixed column to produce a column vector. With a 3x4 matrix, you’ll get the
following column vectors:

[ 0,  1,  2  ]
[ 3,  4,  5  ]
[ 6,  7,  8  ]
[ 9,  10, 11 ]

mat[^0, 0]:

  [ 0, 3, 6, 9 ]

mat[^0, 1]:

  [ 1, 4, 7, 10 ]

mat[^0, 2]:

  [ 2, 5, 8, 11 ]

Going a step further mat[^1, ^0] would transpose the matrix. Similarly, a sub-matrix could be
formed with a ranged index, mat[0, 0 … 1] makes a vector with 2 elements from the first row. Or
mat[0 … 1, 0] takes two elements from the first column. Putting both together, mat[0 … 1, 0 …
 1] makes a sub-matrix with two elements from the first row and 2 from the second row. Lastly
you could transpose and sub-size at the same time, mat[^1: 0 … 1, ^0: 0 … 1]. Using the
previous example matrix, you’d get the following new matrix.

[ 0 3 ]
[ 1 4 ]

Most times when transposing or sub-sizing a tensor you get a tensor with gaps or discontiguities in
it. Gaps and discontiguities are incompatible with IR0’s memory model for function invocations. To
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pass a tensor containing discontiguities to another function, it must be copied into a contiguous
tensor. Because some approaches to proving statements in the Translation-IR may not have
contiguity requirements — even translation to the Circuit IR might inline function calls — the @wire
expression may be used with a discontiguous tensor to emit copies into a contiguous range of wires.
In approaches which do not require wire contiguity in their outputs, the @wire(tensor_with_gaps)
directive may be replaced with a no-op.

5.3.4. Gate Expressions

Most Circuit-IR gates will have lookalikes in the Translation-IR. When a gate expression is
evaluated, rather than performing ZK, a new gate is emitted to the circuit, and its output wire
number is the expression’s result. Most gate expressions will have the form @gate(lhs, rhs), where
lhs and rhs are sub-expressions. The Circuit-IR’s field index is omitted, as it is inferred from the
expressions' types.

For example, @mul(wire_a, wire_b) could emit $2 ← @mul(0: $0, $1);. wire_a and wire_b must have
the same field type (rather than a public visibility type), and the translator will emit the field’s
index. The expression’s result would be $2, so that subsequent expressions can emit the correct
wire number. Similarly, @mulc(wire_a, int_b) could emit $3 ← @mulc(0: $0, <2>). In this case wire_a
must be a wire, and int_b must be an integer. int_b will be emitted as a constant modulo the prime
of wire_a's field.

A special Translation-IR gate is @wire, corresponding to the copy and assign directives of the Circuit-
IR. These enable either an explicit copy or the assignment of a constant via the following two
syntaxes.

• @wire(wire_expr) duplicates the wire expression to another wire.

• @wire(field_name: int_expr) translates the integer expression’s result to a constant assignment
in the circuit.

Two additional gate expressions are provided to mirror @short_witness and @instance from the
Circuit-IR. They have the forms @short_witness(field_name) and @instance(field_name), and they
emit themselves to the output circuit.

5.3.5. Conversion Expressions

The conversion expression also mirrors the Circuit-IR’s conversion directive. The expression
accepts either a vector of wires or a scalar, and produces either a vector of wires or a scalar in a
different field. The input and output fields and sizes must match a conversion specification.

Like the field specification, a conversions specification goes in the top-level scope to indicate fields
and vector sizes accepted by conversions.

@convert(@out: field_name[ vector_len ], @in: field_name[ vector_len ]);

field_names are identifiers referring to field specifications and vector_len are integer constants
indicating the number of elements in a vector. In cases when vector_len is 1, a single wire may be
used in place of a vector input or output.
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The @convert expression may be used anywhere an expression is allowed. It first accepts a
specification to indicate its output type. Then it accepts an input parameter.

@convert(out_field[ len_expr ], input_expr);
@convert(out_field, input_expr);

When len_expr is omitted a single wire is output rather than a vector. The input type and vector len
is determined from the input_expr.

5.3.6. Reserve Expressions

Reserve expressions create non-assigned tensors. They cannot be used as arguments to most other
expressions, but they can be used with assignment directives.

@reserve(type [size, ...])

5.4. Assignments
An assignment directive will add a variable to the program’s state, and give it a value based on the
assignment’s expression.

new_identifier <- expression ;

The result of the expression (and the result’s type) are remembered in the new_identifier. In the
case that new_identifier corresponds to a non-assigned identifier (such as a yet to be assigned
output), its expected type must match the actual type of expression.

Assignment directives may also be used to partially assign a tensor. In this form the left-hand side
takes an index expression rather than an identifier.

tensor[index] <- expression;

5.5. Assert Zeros
In the Translation-IR the @assert_zero directive accepts an expression with a wire result. It will emit
an @assert_zero directive to the circuit requiring that the expression’s result is zero.

@assert_zero(expression);

5.6. Functions
Functions allow a block of code to be bundled up and reused later. They are split between a
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declaration and an invocation. The declaration directive, allowed only in the global scope, creates a
function which may be used in a later in an invocation directive.

The declaration consists of a signature followed by a body. The signature is a list of output
parameters followed by a list of input parameters. Since wire and tensor types are defined by
expressions of field and size types, prior parameters may be used in expressions defining types.
Here is the example of a vector multiplier.

@function vector_mul(@out: wire F[S] os, @in: field F, size S, wire F[S] ls, wire F[S]
rs)
  /* Omitted */
@end

In this example, field and size are type keywords to describe the input parameters F and S.
Subsequently the input parameters ls and rs are defined as wires with type F, the [S] indicating
they are vectors. Similarly, a dot product and a matrix product would be defined like this.

@function vector_dot(@out: wire F o, @in: field F, size S, wire F[S] ls, wire F[S] rs)
  /* Omitted */
@end

@function matrix_mul(@out: wire F[A, C] os, @in: field F, size A, size B, size C, wire
F[A, B] ls, wire F[B, C] rs)
  /* Omitted */
@end

Within the body, Translation-IR directives may be used to transform the inputs into outputs. The
function body must assign all output parameters.

To invoke a function a special @call directive is used. Invocation is not an expression because
functions are allowed to have multiple output parameters. Input arguments are bound to
expression results in function order. For each input, the expression’s result type must match the
associated parameter’s declared type. Each output is assigned to an identifier in list order. For
example, the invocation of a division and remainder function may appear like this.

// assume a and b are wires in field F
q, r <- @call(div_rem, F, a, b);

For partial-tensor assignments, index expressions may appear in the output list.

5.7. For Loops
A for loop will repeat a block of code, and is the best way to assign elements to a tensor. On each
iteration an element of the output tensor is assigned by assigning to a non-assigned variable
created within the body. Variables may also be created within the loop body to iterate across fully
assigned tensors. Here is an example loop which would perform vector multiplication.
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z in wire F[s] zs <- for i (x in xs, y in ys)
  z <- @mul(x, y);
end

In this example the z in wire F[s] zs clause creates an outer scope variable zs with type wire F[s].
It also creates a loop-scope non-assigned variable z with type F which must be assigned within the
body. The x in xs and y in ys clauses will create inner scope variables (x and y) which traverse the
tensors xs and ys. Naturally this co-traversal creates the requirement that xs and ys both have the
same length (s) as the zs output. The i iterator is a size variable created in the loop’s scope, starting
at 0 on the first iteration and incrementing on each subsequent iteration.

More formally, loop traversal blocks will iterate over the outermost dimension of a tensor. Output
traversals may either either traverse newly created tensors with the syntax inner_variable in type
outer_variable or existing non-assigned tensor variables with the syntax inner_variable in
outer_expression. In the latter form, which is also used for input traversals, indexing expressions
may be used to perform traversals along alternative indexing schemes.

The loop also allows for variables to be modified once on each iteration. This enables the loop to
carry a bit of information to the next iteration, which is necessary for sequential loops, such as an
iterative summation. This example would perform a dot product.

sum <- @wire(F: 0);
for i (x in xs, y in ys) modifies sum
  sum <- @add(sum, @mul(x, y));
end

In the case that repetition is needed, but not for traversal of a list, a for i repeat n syntax is
offered. In this case n is a size expression indicating how many iterations should occur.

5.8. If Statements
An if statement assigns a set of variables based on a publicly known condition variable. Because the
if statement assigns outputs in its outer scope, the else branch must always be present, although 0
or more elif branches may be present. Here is an example if statement.

// assume that a and b are wires in field F and i and j are integers
wire F result <- if (i < j)
  result <- @mul(a, a);
elif (i == j)
  result <- @mul(a, b);
else // (i > j)
  result <- @mul(b, b);
end

The wire F result clause creates a non-assigned variable within each branch’s inner scope. The
first if or elif block whose condition is true is the active branch, and its body is executed. When
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the end of the active branch is reached, the result is emplaced into the outer scope.

Instead of creating a new variable in the outer scope, an outer scope non-assigned variable or
partially assigned tensor index expression may be used in the output list of the if statement. The if
statement may also specify zero or multiple outputs for itself.

5.9. Structs
The Translation-IR allows for structs to represent data structures. Structs have data members but
use functions to expose behaviors rather than accessing members directly. This allows the
implementation of a struct to vary while its interface remains the same, in case a backend desires
to override it with a bespoke implementation.

The struct’s syntax uses the struct keyword and its name to begin the struct declaration. Next, data
members may be listed using type member_name; notation, followed by a list of function declarations
for their behavior. Behavior functions' input parameters of the struct’s own type may be annotated
as modify, indicating that the behavior will modify its input parameter. The modify keyword can be
used where a linear type system must be enforced or where a bespoke ZK optimization would
modify data in an otherwise constant behavior.

Within struct member functions, special assignment directives are used to access struct members,
create new structs, and, where allowed, modify input structs. The special assignment directives are
only usable within their own struct.

• name_in_scope, … <- access(struct_object: name_in_struct, …);: retrieve member variables
from the struct.

• object_to_modify <- modify(name_in_struct : name_in_scope, …);: modify members of a struct.

• object_in_scope <- create(name_in_struct : name_in_scope, …);: create a new struct.

Use of the struct is allowed only through its behavior functions.

Here is an example.

struct Uint32
  wire Bool[32] bits;

  // create a new struct value as return by adding two existing structs
  @function Uint32_add(@out: struct Uint32 o, @in: struct Uint32 l, struct Uint32 r)
    l_bits <- access(l: bits);
    r_bits <- access(r: bits);

    // assign o_bits using a 32-bit adder circuit

    o <- create(bits: o_bits);
  @end

  // edit a current struct value by adding another's value to itself
  @function Uint32_add_to(@in: modify struct Uint32 l, struct Uint32 r)
    l_bits <- access(l: bits);
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    r_bits <- access(r: bits);

    // assign o_bits using a 32-bit adder circuit

    l <- modify(bits: o_bits);
  @end

  // create a struct by assignment of 32 booleans
  @function Uint32_bool_create(@out: struct Uint32 o, @in: wire Bool[32] bits)
    o <- create(bits: bits);
  @end
end

// assume a_bits and b_bits have type wire Bool[32]
a <- @call(Uint32_bool_create, a_bits);
b <- @call(Uint32_bool_create, b_bits);
// create c by summing a and b
c <- @call(Uint32_add, a, b);
// add a to b, modifying b
@call(Uint32_add_to, b, a);

NOTE
The use of rings to demonstrate of struct functionality is not intended to advocate
for or against the inclusion of rings as a standard library or as a builtin core
functionality.

6. Plugins and Other Functionality
Plugins and other functionalities are not a part of the IR’s core functionality, but remain as
allowable syntax and are generally handled as unspecified behavior within each backend. Plugins
(and variances in fields supported) necessitate a configuration negotiation ("JR") where a ZK
backend declares to the frontend which fields and plugins it allows. In this section we describe
plugins for both the Circuit-IR and the Translation-IR; then we describe hints to guide the
Translation-IR compiler and a configuration negotiation for the Circuit-IR.

6.1. Circuit-IR Plugins
Circuit-IR Plugins allow a circuit to refer to specific functionality which is not defined within itself.
Instead, the functionality is called by a name which the backend recognizes.

Plugins look like functions; however, the function body has been replaced with a special @plugin
directive which enables the backend to recognize the plugin. To declare a plugin function, start
with the signature of a function. Then use the @plugin directive with a comma-separated sequence
of identifiers and numeric literals. Invocation will remain the same as for functions.

// declare the function signature with a plugin body
@function(vec_mul_4, @out: 0:4, @in: 0:4, 0:4) @plugin(vector, mul, 4);
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// call the vec_mul_4 plugin
0: $8 ... $11 <- @call(vec_mul_4, 0: $0 ... $3, 0: $4 ... $7);

Option: Plugin Specification

If this option is taken, the plugin’s name must be specified in the specification section before the
@begin keyword. The plugin’s name must be supplied to each @plugin directive as the first
parameter.

@plugin(vector);
@field 127 arithmetic;
@begin
  // Okay! The vector plugin was declared
  @function(/* ... */) @plugin(vector, /* ... */);

  // Not Okay! The matrix plugin was not declared
  @function(/* ... */) @plugin(matrix, /* ... */);

Option: Plugin Fields (Types)

If this option is taken, special fields (types) may be declared by the plugin. Wires of a plugin field
must be manipulated via plugin functions.

// 0: A regular field
@field 127 arithmetic;
@plugin(ring);
// 1: A plugin field using the ring plugin
// presumably this does arithmetic mod 2**7
@field @plugin(ring, base, 2, exponent, 7);
@begin
  // interaction with plugin fields is allowed via plugin functions
  @function(int7_mul, @out: 1:1, @in: 1:1, 1:1) @plugin(ring, mul);
  @function(int7_add, @out: 1:1, @in: 1:1, 1:1) @plugin(ring, add);

NOTE
If this option is taken, it may be beneficial for the @field keyword to be renamed to
@type or something less controversial.

6.2. Translation-IR Plugins
Plugins in the Translation-IR are designed to allow the Translation-IR to emit plugins in place of a
function’s body. Much like in the Circuit-IR, these plugins replace the body of a function with an
@plugin directive containing a comma-separated list. Again the function’s signature is given as
normal, and its body is replaced with the @plugin directive. Within the @plugin's body, both
unrecognized identifiers and integer and size expressions are allowed. Unrecognized identifiers
will be emitted directly, while expressions will be evaluated and their numeric result emitted.

The following example will emit a plugin function with similar functionality to the Circuit-IR
vec_mul_4 example.
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// declare the function signature with a plugin body
@function(vec_mul, @out: wire F[s] os, @in: field F, size s, wire F[s] ls wire F[s]
rs)
  // "vector" and "mul" are emitted directly, while "s" emits a size constant
  @plugin(vector, mul, s);

// calling a plugin function reuses the call directive
// assume that a and b have type wire Mersenne61[sz]
c <- @call(vec_mul_4, Mersenne61, sz, a, b);

Option: Plugin Specification

This option mirrors the Circuit IR option, and, if taken, the plugin’s name must be specified in a top-
level scope, although lexical order may be ignored. The plugin’s name must be supplied to each
@plugin directive as the first parameter.

// Okay! The vector plugin is declared later in the file
@function(/* ... */) @plugin(vector, /* ... */);

// Not Okay! The matrix plugin is never declared
@function(/* ... */) @plugin(matrix, /* ... */);

@plugin(vector);

Option: Plugin Fields (Types)

This option also mirrors the Circuit-IR option, and, if taken, special fields (types) may be declared by
the plugin. Plugin functions must be declared for basic interactions with the plugin type. An
expected use case for plugin fields is as an alternate implementation of a struct. The example given
mirrors the Uint32 example Translation-IR Structs.

@plugin(ring);
@field uint32_impl @plugin(ring, base, 2, exponent, 32);

struct Uint32
  uint32_impl val;

  @function(Uint32_add, @out: struct Uint32 o, @in: struct Uint32 l, struct Uint32 r)
    @plugin(ring, add, 32);

6.3. IR2 Compilation Hints
Compilation hints would allow libraries and frontends to make hints about optimal compilation of
particular functions to the Translation-IR compiler. For example, a library could make the hint that
an internal function be inlined into API functions, or that a very large function never be inlined. Or
a frontend might suggest to the Translation IR compiler that a for loop is easy to vectorize and to
emit calls to vector plugin functions rather than unroll the loop. Or a library might supply a plugin
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implementation with a particular prime or prime family and a fallback implementation for other
primes. Regardless, the hint(…) syntax should annotate other directives with special instructions.
In most cases, it should be easy enough to ignore the hint if it isn’t recognized.

6.4. Configuration Negotiation ("JR")
The JR identifies Circuit-IR features and plugins which may be supported and combined by a
particular backend. The following elements probably should or could be present in the JR:

• Primes and prime families supported by the backend, along with an order of preference

• List of plugins supported by the backend

• Other requirements and preferences:

◦ Whether to emit functions or flatten the entire relation

◦ Whether the backend prefers circuit breadth or depth

This research was developed with funding from the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR001120C0087. The views, opinions, and/or findings
expressed are those of the author(s) and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.
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